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1.14.1 INTRODUCTION

Design of composite aggregates for a specific
application involves several physical and
geometrical parameters related to the micro-

403

structure, and depends on the type of service
loads and the application environment. More-
over, fabrication methods and parameters
cause significant local stresses and deformation
that may affect the performance of the material.
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Under these circumstances, it is essential to
develop micromechanical theories which evalu-
ate the local fields and predict the overall
response under combined thermal and mechan-
ical loads. The basic elements of these theories
are geometrical modeling of the microstruc-
tures and local interactions, and constitutive
modeling of the homogeneous phases. An es-
sential requirement of the latter is to include
inelastic deformation to model composite sys-
tems which exhibit nonlinear response under
thermal and mechanical service loads.

Since the early 1960s, micromechanics of
composite materials has attracted many re-
searchers. This led to significant theoretical
developments for prediction of elastic and in-
elastic constitutive response, and motivated ex-
perimental validation. The purpose of this
chapter is to summarize these developments,
and illustrate their application in predicting
the overall response under thermomechanical
loads. Although treatment of the subject in this
chapter covers two-phase particulate and fi-
brous materials, the focus in applications will
be on fibrous composites and laminates.

We begin by examining elastic composites
and provide general relations among the local
and overall fields. This is followed by descrip-
tion of two classes of models, which associate
these relations with an idealized microgeometry
of the composite. In one class of models, the
microgeometry is not known in detail, but in-
teraction of the phases is considered by the
solution of certain inclusion problems. In the
other class of models, the microstructure is
idealized as a periodic dispersion of the reinfor-
cing phase into the matrix, and a unit cell is
analyzed under the applied loads. The next two
sections are devoted to application of these
models, when rate-independent and rate-depen-
dent flow theories describe constitutive beha-
vior of the phases. We close with a section on
inelastic laminates where overall constitutive
equations, which utilize micromechanical mod-
els of the individual plies, are developed.

The notation used here are symbolic, where
symmetric second-order tensors are written as
(6 x 1) matrices and denoted by boldface lower
case letters, and symmetric fourth-order tensors
are written as (6 x 6) matrices and denoted by
boldface upper case letters. Connections with
tensor notation are easily established. For ex-
ample, the stress tensor, o, and strain tensor
gy, with the symmetry 6; = 6;; and ¢; = g, are
written in a matrix form as o = [6,(, 622, 13,
O23, O35, O12), and & = [gyy, €2, £33, 2623, 283,
2¢g15]. Similarly, fourth-order tensors having at
least the symmetries A = Aju; = Ayy are re-
duced to g6 x 6) matrices A, such that

AA~™!'= A7'A =1, the identity matrix.

1.14.2 MICROMECHANICS OF ELASTIC
COMPOSITES

In this section, we outline the general proce-
dure for evaluation of the local stresses and
strains, as well as the overall properties of a
composite medium consisting of two distinct,
elastically anisotropic constituents. The consti-
tuents are assumed to be fully bonded at a
defined interface, and free of voids and cracks,
initially and under subsequent deformation.
Loading consists of overall uniform stresses or
strains as well as local transformation strains.
The latter can be generated, for example, by a
change of temperature or inelastic flow of the
phases, and will be examined in more detail in
the next two sections. In the present treatment,
we assume that some localized volumes of the
microstructure undergo uniform transforma-
tion strains without reference to their origin.

1.14.2.1 Governing Equations

A representative volume V of the composite
aggregate is selected such that its overall re-
sponse under uniform fields is identical to that
of the composite. The local stresses and strains
within V vary pointwise, but will be approxi-
mated by piecewise uniform fields over subvo-
lumes V,, r = 12,... Q, such that V=) V,, or
Y¢, =1, where ¢, = V,/V is the volume frac-
tion. The number of subvolumes @ indicates
the degree of refinement of the local fields. For
example, a crude approximation of the local
stress and strain by a piecewise uniform distri-
bution over two subvolumes (one belongs to the
matrix and the other to the fiber), provides the
averaging models. On the other hand, the fiber
and matrix can be subdivided into many small
volumes, which reside in either phase as em-
ployed, for example, in finite element modeling
of the representative volume V. Let o, and &,
denote the average stress and strain in a sub-
volume such that

o, =— J o(x)dV,, & =

r

%[ g(x)dV, (1)

r Ve

where x represents the coordinates of a point in
V.. Similarly, the overall uniform stress o and
strain € can be written as

Q
o= Ha(x)dV= IL/Z J a(x)dV,
Vv

r=1

0 0 & 2)
= Z O, &= ZC,E,
r=1

r=1
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Consider elastic behavior of each homoge-

neous subvolume subjected to a uniform strain
g,, Or stress o, and simultaneously undergoing
uniform transformation strain p,, or stress \,.
In the subsequent sections, where nonlinear
response is considered, we will deal with stress
and strain increments rather than total quanti-
ties. Consequently, the constitutive equations
of the elastic phases or subvolumes will be
written in a rate form as

G, =L& + N\, &=Mo, +p, ?3)

where L, and M, = L,~! are elastic stiffness
and compliance matrices. Unless there is a
change of temperature, these property matrices
remain constant within ¥,. From Equation (3),
the transformation stress and strain are related
by A, = =L,

Similarly, the constitutive equations for the
composite aggregate subjected to overall uni-
form strain &, or stress o, and undergoing uni-
form transformation strain g, or stress A, are
written as
g=Lé+ N, é=M&+p e
where L and M = L™ ! are overall elastic stiff-
ness and compliance matrices, and p and A are
related by A = —Lp.

The connection between the overall property
matrices and their local counterparts was estab-
lished by Hill (1963, 1965b) in terms of phase
strain and stress concentration factors, denoted
respectively by A, and B,. In the absence of
transformation fields, the local strain and stress
averages in the phases or subvolumes are writ-
ten as
£ =A% 6,=Byo Q)
If the concentration factors are known, one can
utilize Equations (2)—(4) to find the overall
elastic stiffness and compliance in the form

[ [
L= Z ¢ LA, M= Z ¢:M,B, (6)
r=1 r=1

together with the connections

Q Q
SoA =1 Y ¢B =1 (7)
r=1 r=1

AM=MB, BL=LA, ®)
where I is identity matrix. When Q = 2, the
local fields are determined as averages over
the fiber and matrix phases. In this case, Equa-
tions (6) and (7) provide the concentration
factors in terms of the local and overall moduli
as

-Ar = (Lr‘—Ls)—l(L_Ls)/cr
Br = (Mr - Ms)— l(M-—M_,)/C,, r,s =f;m (9)

In the presence of local transformation fields
in the phases or subvolumes, V,,r = 1,2,... 0,
additional strains and stresses are generated
and superimposed on the fields in Equation
(5), to yield (Dvorak, 1992),

Q Q
&=A&+) Dupy, 6 =Bo+ STEA (10)

r=1 r=1
where D,; and F,,, r, s = 1, 2,... Q, are trans-
formation influence functions. The kth column,
k=1,2,...6,of D, evaluates the local strain g,
in phase V,, caused by a uniform transforma-
tion strain component p; of unit magnitude
present in V, under & = 0. Similarly, the kth
column of F,, evaluates the local stress o in V,
caused by a uniform transformation stress A, of
unit magnitude present in ¥ under & = 0.

The overall transformation stress and strain

are given in terms of their local counterparts by
the generalized Levin’s (1967) formula (Dvorak
and Benveniste, 1992),

% Q
A= ZC,A?A,, o= Zc,B;rpl, (11)
r= r=

The mechanical concentration factors and
the transformation influence functions depend
on the micromechanical mode! used in approx-
imating the local fields. In the sequel, we briefly
describe two classes of models, which can be
utilized to compute the concentration factors A,
and B,, and the transformation influence func-
tions D, and F,,, 7, s=1, 2,... Q, for the
subvolumes V,. Under certain approximations
of the local fields, closed form expressions can
be found for the influence functions in terms of
the mechanical concentration factors. Consid-
ering estimates derived with the self-consistent
(Hill, 1965a, 1965b or Mori and Tanaka, 1973)
methods, discussed in the sequel, Dvorak and
Benveniste (1992) found the following expres-
sions for both methods,

D, = I1—A)( L,—L)~ '@, J— AL, (12)

F. = A—B)(M,—M)~'(3,,I—c,B) )M,
r,s=12...0 (13)

with the connection
Frs = Lr(arsl - CsArB;r - Drs)Ms (14)

where §,, is the Kronecker’s tensor.
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When the local fields are averaged over the
fiber and matrix phases, Q = 2, Equations (12)
and (13) reduce to (Dvorak, 1991)

Drs = (I - Ar)(Lf_ Lm) - Ls
Frs = (I—BI)(Mf_Mm)_l Msa r,s =fam (15)

1.14.2.2 Micromechanical Models

1.14.2.2.1 Two-phase averaging models

These models utilize Eshelby’s solution
(Eshelby, 1957) of an ellipsoidal inhomogeneity
in an infinite matrix under remotely applied
uniform fields to estimate the average stresses
and strains in the matrix and the fiber reinfor-
cement. Hence, the number of subdivisions of
the representative volume ¥ in these models is
Q = 2. Starting with the solution of a transfor-
mation problem in which a region (referred to
as the inclusion), in an infinite homogeneous
isotropic elastic medium undergoes a “sponta-
neous change of form,” or eigenstrain p,
Eshelby (1957) established that if the inclusion
is ellipsoidal, then the stress and strain within
the inclusion are uniform, but not necessarily
coaxial with p. This important result led
to the solution of several related problems. In
the inhomogeneity problem, an ellipsoid of the
same shape and size as the untransformed in-
clusion, but from a different material, is em-
bedded in the matrix, and a uniform strain field
is applied. Solution of this problem is provided
by the first inclusion problem in which an
“equivalent inclusion,” subjected to a certain
transformation strain and the given applied
uniform strain field, replaces the inhomogene-
ity without altering the stresses or strains any-
where.

Let p be the unknown transformation strain
to be applied to the equivalent inclusion, which
has the same material properties as the sur-
rounding matrix. The constrained uniform
strain field in the inclusion is given by Eshelby
(1957) as

€ =Su (16)

where S is a constant matrix which depends on
the shape of the ellipsoidal inclusion and Pois-
son’s ratio of the isotropic matrix material. If a
uniform strain field € is superimposed, the
strain in the inclusion is given by (g + £°),
and the stress by Li(e + & — ), where L, is
elastic stiffness of the matrix and inclusion. On
the other hand, the stress in the inhomogeneity,
with stiffness L, is L€, where &, = € + €% is
the total strain. The transformation strain in

the equivalent inclusion is then found by equat-
ing the stresses in the inclusion and the inho-
mogeneity, utilizing Equation (16),

Li(e + Sp—p) =L, (g + Sp) )

and the strain in the inhomogeneity is found as
€ = eSp. Alternately, &, can be found directly
from Equations (16) and (17) after rewriting the
latter as L;(g; — ) = Lg,. The result is

& =[0-SL7'(L, - L) 'e (18)

This result has been utilized in several models
to determine the strain and stress concentration
factors in two-phase composites. Considering a
dilute concentration of ellipsoids of Material 2
(the reinforcement) into a matrix of Material 1,
the strain concentration factor in the reinforce-
ment, Ay, is given by the coefficient matrix in
Equation (18) (Christensen, 1979). The corre-
sponding stress concentration factor, B, can
then be found from Equation (8). Hence,

Ay =[I-SL{' (L, —Ly]~!
B: = L[ - SL7 (L, — Ly)]~'M (19)

where M is the overall compliance of the com-
posite aggregate. If the Eshelby matrix S is
known, Equation (19) can be used to find A,
and Equation (7), with Q = 2, provides A,, the
matrix strain concentration factor. The stress
concentration factors are then found from
Equations (19) and (7), where the overall com-
pliance is given by M = L™!, and the overall
stiffness L is computed from Equation (6) with
Q=2

Hill (1965b) gives a variant form of the con-
centration factors of Equation (19) in terms of
the stiffness and compliance matrices of the
cavity containing the inhomogeneity. His pro-
cedure leads to the following form of the
Eshelby matrix S

S=PL,=1I-M|Q (20)

where P and Q are related by PL; + M, Q =1,
and depend on the shape of the ellipsoidal
inclusion and elastic moduli of the matrix. In
this case, the concentration factors are written
as

A, =[I-P(L,—-L)]"'
B, = [I-QM,-M,)]"!, r=12 @1

We note that for the dilute approximation,
where the reinforcement causes only a small
perturbation of the overall field, A; = B, = L.
Evaluation of the concentration factors and the
overall moduli is thus reduced to evaluation of
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P or Q. Forms of P for various shapes.of
ellipsoidal inclusions can be found, for exam-
ple, in Walpole (1967, 1969), Kinoshita and
Mura (1971), and Mura (1982). Matrix P eval-
uated for continuous, parallel cylindrical fibers
embedded in a transversely isotropic matrix is
given in Section 1.14.8.

Interaction of the inhomogeneities, which is
neglected in the dilute approximation, has been
considered in both the self-consistent (Bu-
diansky, 1965; Hill, 1965a, 1965b) and the
Mori-Tanaka (Mori and Tanaka, 1973) meth-
ods in two different ways. In the self-consistent
method, the reinforcement is embedded in a
homogeneous medium, which has the effective,
but yet unknown, properties of the composite.
In this case, Equation (21), with L; = L and
M, = M where L and M are overall stiffness
and compliance matrices, give the concentra-
tion factors;

A= [FPL-L)]™
B, =[-QM-M)"!, r=12 (22)

Since the overall properties are not known and
depend on the concentration factors, Equation
(22) is implicit and must be solved iteratively for
the concentration factors, or the overall mod-
uli.

The Mori-Tanaka method, on the other
hand, provides explicit forms for the concentra-
tion factors. The solution is found in two steps
(Benveniste, 1987). First, the reinforcement L,
is embedded in the matrix L;, and a uniform
displacement field, derived from the matrix
strain, is applied at the remote boundary. This
provides a partial strain concentration factor,
T, which defines the uniform strain in the
reinforcement in terms of the matrix strain.
An equivalent formulation can be found by
subjecting the remote boundary to tractions
derived from the matrix stress, and a partial
stress concentration factor, W, is found. Using
Equation (21), we find

& =Tg, T=[I-PL-L)]™" (23)

o =Wo;, W=[I-QM,—M)]"' (24
Finally, Equation (2) is utilized to obtain the
strain and stress concentration factors, for the
reinforcement and the matrix, respectively, as
A =(cl+ D™, A =TA (25)
B, = (] + ;W)™!, B, =WB, (26)
Given the concentration factors, the overall

elastic stiffness and compliance matrices for
two-phase composites are determined from

Equation (6) with Q = 2. Overall elastic moduli
derived from the self-consistent and Mori-Ta-
naka models for fibrous composites are given in
Section 1.14.8.

1.14.2.2.2 Periodic array models

In this class of models, the actual material
microgeometry of the composite is replaced
with a certain periodic approximation. Under
overall uniform fields and a uniform tempera-
ture change, the local fields possess certain
symmetric features such that a unit cell can be
selected for evaluation of the local fields and the
overall response (Iwakuma and Nemat-Nasser,
1983; Dvorak and Teply, 1985; Teply and
Dvorak, 1988; Nemat-Nasser and Hori, 1993;
Walker et al., 1994; Moulinec and Suquet, 1994;
Buryachenko, 1996). As an application to fi-
brous composites, we show in Figure 1 a high
contrast micrograph of the transverse plane of a
boron-aluminum composite consisting of sev-
eral monolayers, and its idealization by a per-
iodic hexagonal array of fibers (Dvorak and
Teply, 1985; Teply and Dvorak, 1988). Several
other configurations of periodic dispersions of
fibers in the transverse plane of unidirectional
composites can be selected (Brockenbrough
et al., 1991). We note that the hexagonal fiber
arrangement provides rotational symmetry
about the fiber longitudinal axis, while idealiza-
tions with square and rectangular array possess
only orthotropic symmetry.

In any case, a unit cell is selected and sub-
divided into small volumes, V,, r=1, 2,... Q
such that each subvolume belongs either to the
matrix or to the fiber. Evaluation of the piece-
wise uniform local stresses and strains in the
subvolumes under overall uniform fields and
uniform temperature change can proceed in
two different ways. In the first approach, the
overall stress and temperature time rates are
applied, and the solution is found by the finite
element method. The overall loading path is
either known a priori, or derived from struc-
tural interaction of the unidirectional lamina
under consideration with other plies as encoun-
tered for example in fibrous laminates (Bahei-
El-Din et al., 1998). Nexi, nodal forces that
equilibrate the applied overall stresses are com-
puted. Consider, for example, the unit cell de-
rived from the periodic hexagonal array model
(Dvorak and Teply, 1985; Teply and Dvorak,
1988) shown in Figure 2. The displacement
boundary conditions consist of the six con-
straints indicated in Figure 2 to eliminate rigid
body motions, multipoint constraints at the
triangular boundary derived from the assumed
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Figure 1 Transverse cross-section of a fibrous composite: (a) high contrast micrograph of a B/Al
composite, ¢r = 0.45, and (b) idealization with the periodic hexagonal array model.

periodic geometry of the microstructure, and
generalized plane strain boundary conditions.
Assuming a linear displacement field in an
equivalent  macroscopically homogeneous
volume ¥, the method of virtual work can be
used to compute the nodal forces, pi, k = 1, 2,
..., 6, applied at the independent degrees of
freedom shown in Figure 2, from the overall
stresses. The result is

h
y4 =*'§-022, pz=—g<723
hgc +=0C (o]
= —— —_— 93 — =
P3 3 33 2% 23 3 31 (27)
—ﬁéc +£0’ —=C
Ds = 3 33 2% 23 3 31

Ps =011, Ps=0On2

where & = /3, and A is the length of the unit cell
in the axial direction x|, which is to be selected
such that the largest aspect ratio of the finite
elements is in the order of 10.

In the second approach, the unit cell is
treated as an aggregate of subvolumes V,,
r=1,2,..., 0, and Equation (10) is solved for
the local stresses and strains. Since the local
transformation fields in Equation (10) may
depend on the total or incremental stress or
strain, the form of the governing equations
derived from Equation (10) for the local fields
vary according to the underlying constitutive
law of the phases. This approach, known as the
transformation field analysis, has been applied
by Dvorak et al. (1994) for viscoelastic, elastic-
plastic, and viscoplastic phases, and will be
described in the subsequent sections. In pre-
paration for this solution method, the concen-

tration factors A, or B,, and the transformation
influence functions, D,;or F,, r,s=1,2,... 0,
which depend on elastic properties of the
phases and the assumed microgeometry, must
be first evaluated for the selected subdivision of
the unit cell.

Figure 2 Geometry, constraints, and loading of
the unit cell derived from the periodic hexagonal
array model.
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As suggested by Equation (10), the respective
columns of the concentration factors A, or B,,
represent the strains, or stresses, computed in
subvolume ¥, under unit overall strain, or
stress, components, while all subvolumes are
free of transformation fields. Specifically, the
kth column, k = 1,2,.. ., 6, of the stress concen-
tration matrix B,, ¥ = 1, 2,... Q, is given by the
stresses caused in V; by an overall stress com-
ponent o; = 1. For example, the first column of
B, is given by the stresses caused in V, by the
overall stresses 613 = 1, 6;; =0, i,j # 1. Substi-
tuting these stresses into Equation (27) provides
the nodal forces

n=p2=p3=ps=0, ps=1, ps=0 (28)

which are applied to the unit cell of Figure 2 to
compute the stress concentration factors using
the finite element method.

Similarly, Equation (10) suggests that the
columns of the transformation matrix, D,
rs=1, 2,..., O, represent the strains caused
in subvolume ¥V, by unit transformation strains
applied to V, while the unit cell is fully con-
strained. Specifically, if a transformation strain
component p, = 1,k =1,2,..., 6, is applied to
V,, the resulting strains in subvolumes V,,
r=1, 2,..., O, represent the kth column of
the strain transformation factor D,,. Solution
of this problem can be found by the finite
element method. Let p, denote the transforma-
tion strain vector applied to V. Using the
principle of virtual work, and assuming linear
variation of the displacements within each sub-
volume, the equivalent nodal loads are given by

p= - Vsl_;TleLs (29)

where L is elastic stiffness matrix of the mate-
rial in ¥V, and matrix B relates the nodal dis-
placements to the element strains. The local
strains found in the elements of the unit cell
under the nodal forces given by Equation (29)
provide a column of the strain transformation
matrices D,,, which corresponds to the unit
transformation strain component found in p,.
A total of 6Q similar problems are to be solved
to compute all six columns of the transforma-
tion influence functions. However, internal
symmetry of the unit cell in the transverse
plane can be utilized to simplify this process
(Dvorak et al., 1994). Evaluation of the stress
influence functions F,, follows a similar proce-
dure in which a unit transformation stress com-
ponent A, = 1, k=1, 2,..., 6, is applied to V.

Under isothermal loading conditions, the
concentration factors and transformation influ-
ence functions remain constant, and are com-
puted prior to the analysis of the representative

volume. On the other hand, change of the

“elastic moduli with temperature requires re-

evaluation of all the factors in the course of
the nonlinear solution. In this case, efficiency of

- the transformation field analysis method for

periodic array models may be reduced.

1.14.3 ELASTIC-PLASTIC ANALYSIS

We now consider the solution of composite
aggregates in which behavior of the phases
under mechanical loads is nonlinear, but rate-
independent, beyond an elastic limit or yield
point. The models described above for elastic
phases have been utilized in evaluation of the
local stresses and strains for elastic-plastic
phases. This is described in this section with
results, but first a brief summary of the elastic-
plastic constitutive equations of the homoge-
neous phases is given.

1.14.3.1 Plasticity of Homogeneous Materials

We consider a representative volume of a
phase material of the composite and regard it
as elastically homogeneous and isotropic on a
macroscale. As usually postulated for metals,
and verified by experiments, we assume the
existence of a yield surface in the stress space,
which is the locus of stress points that can be
reached by purely elastic loading excursions
from the current stress state.. Furthermore,
load excursions which go beyond the yield
stress states cause the yield surface to distort,
translate, and deform isotropically such that

_the current stress point is always contained by

the yield surface. Neglecting distortion of the
yield surface, and assuming that its isotropic
deformations are caused primarily by change of
the yield stress with temperature, the current
yield surface can be written in the general form

f(o—2a),T)=0 (30)

where T is the current temperature, and a de-
notes the position of the center of the yield
surface. In the absence of prior inelastic defor-
mation, a = 0, and Equation (30) defines the
initial yield surface. '

Assuming that plastic deformations do not
affect the material symmetry found in the elas-
tic state, specific forms of the yield function in
Equation (30) are typically written in terms of
stress invariants. For example, the Mises form
of the yield criterion is a function of the second
invariant of the stress deviation tensor, s, and is
written as
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(6—a):(6—a)— YHT)=0 (31)

[\ IRV}

f=

where a is the center of the yield surface in the
deviatoric stress space, and Y is the yield stress
in simple tension, the magnitude of which may
depend on temperature. In Equation (31) we
used the notation (a:b) to denote the inner
product of second order tensors a; and b,;.

If the strain decomposition suggested by
Equation (4) into elastic and transformation
parts is assumed, the stress—strain relation is
written in a rate form as

o=LE —& -al), ée=Mo+& +alT (32)

where « is the coefficient of thermal expansion,
and &7 is the plastic strain increment. The latter
is a function of the current stress state and the
applied stress increment. Whether or not a
plastic strain increment will develop when a
stress increment is applied from a current
state, which satisfies the yield function depends
on the loading direction. Under thermomecha-
nical load increments, the possible states found
under loading from the current yield surface
are:

. of . Of
p = = —_— . —_—
& 0for f=0, (80) o+ 8TT<0 (33)

= elastic state or unloading

. 9 N/
P = == P B — =
& =0for f=0, (80’) (1] +0TT 0 (34)
= neutral loading
. N . of .
4 fi = — =T
g #0for f=0, (00_) 0'+8T >0 (35)

= plastic loading

Stress states which fall outside the elastic
domain bounded by the yield surface in
Equations (30) or (31) are not allowed. Conse-
quently, the yield surface expands isotropically

~and/or translates to contain the stress points
that satisfy Equation (35). Any hardening rule
postulated for the yield surface must conform
to Prager’s (1955) consistency condition

f= (5—9 :(a—g)+§§,r'=o (36)
written here for kinematic hardening, while
isotropic changes in the yield surface are caused
by change of the yield surface with temperature.
Evolution laws for the center of the yield
surface a were suggested early on by Prager
(1955) and modified by Ziegler (1959). More
recent experiments conducted by Phillips and
co-workers (Phillips et al., 1972; Phillips and
Moon, 1977; Phillips and Lee, 1979) on com-

mercial aluminum, and by Dvorak et al. (1988)
on 6061 aluminum, indicated that the yield sur-
face translates in the direction of the applied
stress increment to accommodate the stress
point. The magnitude of the translation, how-
ever, must be adjusted if the yield stress varies
with temperature. Under thermomechanical
loading, the Phillips law is written as (Bahei-
El-Din, 1990)

a=yo (37

and the scalar y is found by satisfying the
consistency condition in Equation (36). For
the Mises yield surface in Equation (31), the
result is

_xnyr(mr

=1
Y o-a): o

(38)

where Y'(T) = dY/dT.

The direction of the plastic strain increment
is established with the normality rule, a conse-
quence of Drucker’s (1952) postulate for a
stable material,
_of

¥=T (39)

The magnitude of the scalar I is evaluated from
Ziegler’s (1959) equality,
Y o

For the Mises yield surface in Equation (31),
Equations (39) and (40) give

. 3 Y/(T) ..

P — (—— (Tt 3

& <2H(7) (n".0) THD) T)n (41)
where H(T) is plastic tangent modulus of the
stress—plastic strain curve, determined from a
simple tension test, and defined for multidimen-
sional stress state as

(= =100

= ()

il
—~
=3
=)
[
~—
Pf—

, &
(42)

and n is the unit normal to the yield surface at
the current stress point. For the Mises yield
surface in Equation (31), n is given by

1
n= —’%,[311 62 8y 262 20y 28157
s=s—a

(43)

The constitutive law described above can
now be cast in one of two forms to be utilized
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in the micromechanical models of Section
1.14.2.2. In the first form, the stress—strain re-
lations are written in terms of instantaneous
moduli. Hence, for thermomechanical loading,
we write

o =L+ TE=MS+mT 44)

where £ and M are instantaneous, elastic-plas-
tic stiffness and compliance matrices, and € and
m are instantaneous thermal stress and strain
vectors. Assuming additive decomposition of
elastic and inelastic strains, these property ma-
trices can be written from the constitutive equa-
tions described above, for a Mises yield surface,
as (Bahei-El-Din, 1990)

L=L+£L=M", M=M+M (45)
2G 3
= (——————1 — H/3G> nn'], M = (ﬁl) [n.nT]
(46)

(=1+6=—Lm,

I=-La,# = (I?%%E) <nT.a + )\,/'(Eg))n

m’ = —(\/%—Y:g—"))n

m=o+m “én

(48)

where G is elastic shear modulus.

Alternately, the stress—strain equations can
be written in the equivalent form suggested in
Equation (4),

g=Lé+A, é=Mo+p 49)
where

L=M"} A= —Lg, (50)
p=&—&=MPo + (a +mP)T 51)

For a Mises yield criterion, Equation (51) pro-
vides

p= (%{(nT.(y) - \/%Y’—;{T)-T>n+a7'" (52)

1.14.3.2 Plasticity of Composite Materials

The micromechanical models of elasticity
described in Section 1.14.2 can now be com-
bined with the phase constitutive equations of
plasticity to compute the overall response and
local stress and strain fields in composite mate-
rials. The method depends on the micromecha-
nical model used. First, consider two phase

averaging models, Section 1.14.2.2.1, and
assume that both the fiber and matrix phases
are elastic-plastic with instantaneous properties
given by Equations (45)—(48). In analogy with
Equations (5)-(9), stress and strain increments
in the phases can be written for mechanical
loading as

g =AE, G,=B0, r=fm (53)
where A, and B, are instantaneous strain and
stress concentration factors, given by

A= (8 — L) (L~ £)e,

B, = (M, — M)™ (M~ M)[c,, rs=fm (54)
The overall instantaneous stiffness and compli-
ance matrices £ and M are given by

L= CfﬁfAf‘}' cm.e,,,.Am
M= CfJM-f.(Bf + CmMmem (55)

Since the response of the material is a func-
tion of the past loading history, the instanta-
neous moduli are not known a priori, and the
concentration factors cannot be evaluated from -
Equation (54). Instead, averaging models de-
rived in Section 1.14.2.2.1 for elastic phases are
used to compute the concentration factors,
after replacing the phase elastic properties by
the instantaneous moduli. We recall that the
averaging models described in Section
1.14.2.2.1 represent various interpretations of
the concentration factors given in Equation
(19), which was derived from Eshelby’s equiva-
lent inclusion problem. When the matrix in-
stantaneous properties are used to solve the
elastic-plastic problem, we are effectively sol-
ving successive problems of the Eshelby type
assuming that the matrix is elastically anisotro-
pic. In this case, evaluation of the Eshelby
matrix S can be performed only numerically
(Ghahremani, 1977).

The above approach has been widely imple-
mented for both isothermal and thermomecha-
nical loads (see, for example, Bahei-El-Din,
1990 and Lagoudas et al., 1991). The method
however is known to produce overall and phase
strain predictions that violate the rigorous Le-
vin’s formula in Equation (11). The source of
this violation and related inaccuracies of the
predictions are traced to application of the
plasticity constitutive law using phase average
stresses. A more refined approximation of the
local fields is desired when the constitutive
behavior of the phases deviates from linearity.
This is offered by the transformation field ana-
lysis (Dvorak et al., 1994).

The method centers on Equation (10) which
evaluates the local fields as the sum of contri-
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butions from the overall fields applied to an
elastic aggregate, and the local transformation
fields. If the latter are caused by thermoplastic
deformation of the phases, Equation (51) is
applied to each subvolume to obtain the incre-
ment of transformation strain corresponding to
the current stress state and temperature. Sub-
stituting Equation (51) into Equation (10), we
find

Q
6, =B.6 > FL (M + (o, +m!)T)  (56)

s=1
From Equation (56), the array of local stress

increments {&,} = {G}, 2,...0q} can be writ-
ten as

{6,} = [diag(I) + [F,,LM{]
{BJo — [F,, L){at, + mP} T} (57)

Equation (57) is written for a Mises material as

(6.} = [dlag +3 { 1; F,.LinnT ” B

(-l )
(58)

Integration of Equation (58) along the loading
path (¢, T) provides the local stresses. The local
strain increments are found from Equation
(44), and the overall inelastic strain increments
from the generalized Levin's formula in Equa-
tion (11).

For a Mises yield criterion, the transforma-
tion strains in the subvolumes are given by
Equation (52). In this case, Equation (11) pro-
vides

n=&+al (59)

éﬂ:XQ:c,<2H -\/3’/:(77 )B,T . (60)

r=1

Q .
a= Z C,B?ar (61)
r=|

where £” is the overall plastic strain increment,
and a is the overall coefficient of thermal ex-
pansion.

Equation (57) can be used to derive overall
instantaneous property matrices and thermal
strains which can be utilized in finite element
analysis of composite structures in which the
elements are treated as macroscopically homo-
geneous with properties derived from a micro-
mechanical model (Bahei-EI-Din ef al., 1981).
Comparing Equation (57) with Equation (53),

the instantaneous stress concentration factors
in subvolume V,, r = 1,2,... Q, are written as

(8] = [diag(D) + [F,,L.M])"" [B/] (62)

The overall instantaneous compliance is then
found as

Q
M= Z oM, B,

r=1 (63)
= Z e M, [diag(1) + [F LM | - (8]

A similar procedure leads to

[A] = [diag(T) + [D, ML '[A], (64)

£, [diag(l) + [DrsMsﬁﬂ’] 1" l [A/]

(65)

where A, is the instantaneous strain concentra-
tion factor in V,, and £ is the overall instanta-
neous stiffness matrix. The overall thermal
strain is found from Equations (11) and (47) as

Q
m=> c:B (o +mP) (66)
r=1 .

For a Mises yield criterion, Equations

(62) —(66) provide

[A/] =[diag([) — [(%@_) DM, [n] ]H -1
(A/]

(67)

8] = [diag(l) + Z[HL F,XLA,n_,.nST] } B (B/] (68)

0
L=> ¢k,
r=1

[0 - (3 DMl 1)
(69)
-1

Q
. 1 |
M= Z oM, [dmg(l) + % [}—[‘ F,‘;anjn;I ] } [B,]

r=1

(70)

m = XQ:c,B,T <a, - \/é%T—)—Tn> (71)
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1.14.3.3 Bimodal Plasticity of Fibrous
Composites

The micromechanical models discussed
above for elastic-plastic phases provide the
overall instantaneous strains as well as the
local fields, but can also be used to find the
overall yield surface. Consider, for example, a
two-phase composite in which the fiber is elastic
and the matrix is elastic-plastic with a yield
criterion described by the Mises yield surface
(31). Let s,,, and a,, denote the matrix deviatoric
stress and center of the yield surface, respec-
tively. If s and a denote their overall counter-
parts, and since both the vectors (s,,—a,,) and
(s —a) fall inside their respective yield surfaces,
we can write

m—an) = B,,(s—a) 72

where B,, is the matrix stress concentration
factor. Substituting Equation (72) into Equa-
tion (31), after the latter is rewritten with index
m to denote matrix-related variables, the over-
all yield surface is found in the deviatoric stress
space as

Br(s —a)] : Buls —a)] = V(1) =0 (73)

N W

f=

In the overall stress space o, the yield surface
in Equation (73) is given by

f=(c—a)B,CB,)oc—a)— Y, (D=0 (74

where a is the center of the overall yield surface,
and C is a symmetric 6 x 6 matrix with the
following nonzero coefficients, C;; = Cy =
Cy3=1, Cp=C;3=Cy3= —1/2, Cyy=Css
= Cgs = 3. Overall stress excursions which fall
in the stress domain enclosed by the ellipsoidal
yield surface in Equation (74) cause only elastic
deformation of the matrix. Dimensions of the
overall yield surface depend on magnitude of
the matrix yield stress, and the volume fraction
of the fiber and matrix as well as their elastic
moduli.

Motivated by experimental results, the bimo-
dal plasticity theory (Dvorak and Bahei-
El-Din, 1987) postulates that yielding of the
matrix according to the criterion given by
Equation (73) takes place in fibrous systems
only under loading conditions which allow
both the fiber and matrix to participate in
carrying the applied load. Hence, this deforma-
tion mode is referred to as the fiber-dominated
mode (FDM). On the other hand, the matrix-
dominated mode (MDM) assumes that the ap-
plied load is carried by the matrix, while the
fiber constrains the matrix plastic deformation

to simple shear straining on planes that are
parallel to the fiber longitudinal axis. The
matrix-dominated mode is thus represented by
a variant of the continuum slip-model.

The initial yield condition on any potential
slip plane (k) is taken as,

(@) = (maxrﬁ,’?)z—zg =0 (75)

where 7, denotes the resolved shear stress, and
1, is the matrix yield stress in simple shear. The
active slip system is defined by the normal »; to
the slip plane, and by the slip direction s;, so
that the resolved shear stress is

o) = oy = (i +9), (76)

Considering plane stresses in the x;xp-plane
(Figure 3), where the x;-axis is parallel to the
fiber longitudinal axis, the components 1; and
1, of the resolved shear stress T, are given by

1
T, = oz1c08B, T = -z—czzsin 28 (77)

The maximum resolved shear stress is evalu-
ated from

L))

For the slip system on the plane k = 1, Equa-
tions (76) —(78) provide

By = %cos‘lq2 for |q|<1, B, =0for|q=1l (79)

X3

Figure 3 Geometry of the conjugate slip systems
of the matrix-dominated deformation mode.
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X3

X,

Figure 4 Transverse cross-section of the initial yield surface of the matrix-dominated deformation mode.

where q = 65,/04; if 623 # 0, and the angle 6,
between the slip direction and the x)-axis is
given by

tan 0, = }Isin B, (80)

The conjugate system on the plane k = 2 in
Figure 3 is specified by the angles B> and 0, that
are related to B; and 6, by

B=n—P,0,=0,for gl <1

B, =0,0, =0, for g > 1 81
where 0 < B; < n/4and 0 < 0, < 2n.

Substituting the slip system parameters that
assure maxima of the resolved shear stress
under the applied overall plane stress state,
and assuming kinematic hardening for the ma-
trix, one finds the overall MDM yield condition
as

2
+(Mq:1) ~1=0for|q <1 (82)

2
f, = (__) L1 =0 for ol >1

o

These relations suggest that the MDM yield
surface in the overall plane stress space is an
open cylinder with oval cross-section in the
02,05 -plane, and generators parallel to the

o1-axis. The cross-section of the MDM yield
cylinder for the initial state a;; = ay; =0, is
shown in Figure 4. Note that this surface is
independent of phase moduli and volume frac-
tions.

The overall yield surface is given by the
internal envelope of the FDM yield surface in
Equation (74), projected into the 6, G22, G2
stress space, and the MDM yield surface
branch in Equation (82). The experimental re-
sults that follow show that the shape and posi-
tion of the observed yield surfaces are closely
predicted by the bimodal theory combined with
the Phillips kinematic hardening rule (Equa-
tions (37) and (38)).

1.14.3.4 Experimental Results and Predictions

In this section, we present a sample of the
experimental results obtained in an extensive
study of the behavior of boron-aluminum fi-
brous systems (Dvorak er al., 1988; Nigam
et al., 1994a, 1994b), together with predictions
using the methods outlines in Sections 1.14.3.2
and 1.14.3.3. The experiments were conducted
on thin-walled tube specimens fabricated by
diffusion bonding of seven monolayer 6061-
Al/B sheets. The fibers were aligned parallel
to the meridians of the tube, at a volume frac-
tion ¢y = 0.45. Figure 5 shows the geometry and
instrumentation of the tube. A cross-section of
the tube is shown in Figure 1(a).
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12.5mm
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Figure 5 Dimensions and instrumentation of the composite tube specimen.

The specimens were loaded by axial force,
internal pressure, and torsion, applied accord-
ing to various routines. Here we consider a
specific loading regime in which the specimen
was subjected to internal pressure and torque.
This produced transverse normal stress o,
longitudinal shear stress o,; and axial normal
stress oy = %622. The axial stress was caused by
the internal pressure, and was not compensated
for in the experiment. Consequently, this load-
ing regime can be represented in a stress plane
consisting of the shear stress o; and the resul-
tant normal stress 4/ 0'511 + 6%2 = éO'Qz. This is
shown in Figure 6, where the loading path is
indicated by the diamond symbols, labeled
0,1,..., 11

The overall initial yield surface and three
subsequent surfaces that were detected in the
experiment are shown in Figure 6. The loading
path followed before evaluation of the subse-
quent yield surfaces is indicated in the Figure.
At each point on the yield surface, the yield
stress was defined by back extrapolation from a
small excursion into the plastic region, at zero
offset strain. The experimental yield surfaces
were constructed by fitting the appropriate
sections of the bimodal yield surfaces, Equa-
tions (74) and (82). Apart from the change in
the size of the yield surfaces, the bimodal theory

predicts quite closely the shape of the overall
yield surface in the loading plane of this experi-
ment. Similar agreement between the yield sur-
faces detected experimentally and those
evaluated with the bimodal theory was found
under several other loading regimes (Nigam
et al., 1994a, 1994b).

Figures 7-9 show the comparisons between
the predictions of plastic strains along the path
of Figure 6. The predictions were obtained
from the periodic hexagonal array (PHA)
model with two different meshes, the matrix
mode of the bimodal theory, and the Mori-
Tanaka model. The matrix constitutive equa-
tions described in Section 1.14.3.1 were used in
all models. The comparisons indicate that both
the Mori~-Tanaka and bimodal theories, which
compute the plastic strain using the matrix
stress average, fail to approximate the actual
plastic strains. In contrast, the PHA model
provides a reasonable approximation, even
with a small number of element subdivisions.

1.14.4 VISCOPLASTIC ANALYSIS

In this section, we describe solution of the
composite aggregate when the rate of loading
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Figure 6 Loading path applied to the B/Al composite tube in the transverse tension-longitudinal shear
stress space, with experimental yield points and matrix-dominated yield surfaces.
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has a significant effect on the nonlinear re-
sponse of the phases. We begin with a brief
summary of the rate-dependent constitutive
equations for homogeneous phases, and follow
with the solution for composite materials sub-
jected to thermomechanical loads.

1.14.4.1 Viscoplasticity of Homogeneous
Materials

Several theories have been postulated to
model the viscoplastic behavior of homoge-
neous materials (Bodner and Partom, 1975;
Liu and Krempl, 1979; Eisenberg and Yen,
1981; Walker, 1981; Chaboche, 1989; Neu,
1993). In a high temperature environment, cer-
tain features of the response, such as thermal
hardening and recovery, must be included. To
represent in situ behavior of the homogeneous
phases of composite materials, the constitutive
equations must adequately model the response
under nonproportional loads. Several of these
features are captured by the theories found in
the literature. Here, we briefly describe a rate-
dependent theory with a yield surface which
was developed by the authors (Bahei-El-Din
et al., 1991), and implemented in micromecha-
nical models of composite materials (Bahei-El-
Din et al., 1991; Bahei-El-Din, 1994, 1996)
subjected to thermomechanical loads. For iso-
thermal, proportional loading regimes, the the-
ory degenerates to the equations proposed by
Eisenberg and Yen (1981).

Assuming that the elastic response is rate-
insensitive, a yield surface which bounds all
stress states that produce pure elastic strains is
postulated in the general form in Equation (30),
or the Mises form in Equation (31). The latter is
rewritten here in terms of the deviatoric equili-
brium stress, which represents the long-term
stress state that will be attained by the material
under constant strain induced by loading at a
certain time rate. Accordingly, the correspond-
ing yield surface is referred to as the equilibrium
surface. If both kinematic and isotropic hard-
ening are considered, the Mises equilibrium
surface is written as

3 2
fEE(o*—a):(o*—a)——(Y(T)-f-Q)':O (83)
where s~ is the deviatoric equilibrium stress

tensor, a denotes the center of the equilibrium
yield surface, ¥ = Y(T) is the initial yield stress
in tension, and Q = Q (7) is an isotropic hard-
ening function.

For a given deviatoric stress tensor s, which
lies outside the yield surface in Equatlon (83),
there exists an equilibrium stress s which

satisfies Equation (83) and is collinear with o
and a. Hence,

o[ 2y+0f N\
6 = (m) (0 a)+a- (84)

(6* —a

The effective overstress A is a measure of the
distance between the actual stress point s and
the equilibrium point o™, It vanishes if the stress
point lies on, or falls inside the yield surface. In
particular,

A= (5(0 - ie=) - >0

A=0 ifflo—a) <0 (86)

If the overstress is nonzero, Equation (85),
inelastic strains develop at the rate

& = <\/§k(]")/\”m>n (87)

where the functions 4(T) and p(T) are material
parameters and n is a unit normal to the yield
surface in Equation (83) at the current equili-
brium stress point. The latter is found from
Equation (83) as (see also Equation (43))

(88)

The time rate of Q is dependent on inelastic
deformation and thermal recovery of the equi-
librium yield surface. It is given by

Q=o(T)
[Qu(T) - Q™ - b,(T)|Q ~ Q,(T)| DY (89)
[@ - Q1)

The functions o(7T), Q(T), b(T), Q,(T) and
p,(T) are material parameters, and &" is the
effective inelastic strain rate;

o=

Total (Q, = 0), or partial (Q, # 0) thermal re-
covery is represented by the second term in
Equation (89).

In analogy with Equation (89), and permit-
ting complete thermal recovery of kinematic
hardening, the evolution equation for the center
of the equilibrium yield surface can be written
as
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b= — NAD)EHD Vs, 5= (s:0)7 o1

where n, (T) and y,. (T) are material parameters.
The unit tensor v defines the direction of trans-
lation of the yield surface in the deviatoric stress
space, and can be specified according to the
hardening rules applied in rate-independent
plasticity theories. If the Phillips hardening
rule is selected, then

I

if 4#0 (92)

v=

v=nifs=0 (93)

The factor ¢ in Equation (91) is found from
Prager’s consistency condition f= 0, when
translation of the yield surface is specified by
the first term in Equation (91). The result is

"Y:

V2NN DIH(T) — o(T)(Qe(T) ~ D) /(0 : )

(94)

A two-surface plasticity theory (Dafalias and
Popov, 1976) can be used to describe evolution
of the instantaneous tangent modulus H. In
analogy with Equation (83), a bounding surface
is postulated in the form

(F(1) +Q)*=0 (95)

gE—;—(S—d):(Z——&)-—

where 5 is the deviatoric bounding stress tensor,
determined from equality of the normal to the
equilibrium yield surface n(s" — a), Equation
(88), and the normal to the bounding surface
n(z — @), and @ is the center of the bounding
surface. Y(T) denotes the bounding stress, given
by the intersection of the asymptotic part of the
uniaxial stress—strain curve and the stress axis,
and Q = Q(7) is an isotropic hardening func-
tion. The instantaneous tangent modulus is
then given by

H(T) = H,(T) + K(T) (80—5_5)gm
5= Gg_;*) : <z—o*>)m

where §, is the distance between the equilibrium
yield surface and the bounding surface at the
onset of inelastic deformation. When the equi-
librium stress point lies on the bounding sur-
face, 8 = 0, and the plastic tangent modulus
H(T) assumes the asymptotic value H,(T),
which together with the parameters A(T) and
E(T) need to be determined experimentally.

(96)

In analogy with the equilibrium yield surface,
thermal recovery of isotropic, as well as kine-
matic, hardening of the bounding surface can
be included in the model. This is omitted here
for brevity. We only mention that the recovery -
terms for isotropic and kinematic hardening of
the bounding surface assume a form similar to
those suggested above for the equilibrium sur-
face, but with new material parameters.

With the above constitutive law, we can now
write the stress—strain rate equations in the
form suggested in Equation (4);

G=Leé+\, E=Mo+p 97
where
L=M"!, A=-Lj (98)

p=&"+al= (\@k(r)/\l’m> n+al (99)

and n is given by Equation (88).

1.14.4.2 Viscoplasticity of Composite
Materials

Equations (97)-(99) can be applied to each
viscoplastic phase or subvolume of a composite
representative volume ¥V to compute the local
fields and the overall response. This is achieved
by the transformation field analysis, which em-
ploys Equation (10) to compute increments of
the local stresses as the sum of contributions
from the overall load and the local transforma-
tion strains. Substituting Equation (99) into
Equation (10), we obtain the stress rate in
volume V, as

0
=B,6 — Z (\/ T)AMT))FNL n,

=1
Q -
- ZF,SLSasT, r=1,2,..0

s=1

(100)

Integration of Equation (100) along the loading
path (&, 0) provides the local stresses. The local
strain increments are found from Equations
(97) and (99), and the overall inelastic strain
increments from the generalized Levin’s for-
mula in Equation (11).

This approach is applicable to both the aver-
aging models (Q = 2) in Section 1.14.2.2.1, and
the periodic array models (Q > 2) in Section
1.14.2.2.2. Selection of a particular model is
reflected in the form of the stress concentration
factors B, and influence functions F,,. Dvorak
et al. (1994) illustrate the application of this




420

Micromechanics of Inelastic Composite Materials

5 (2000 s)
- 4 (1000
= 500 xq ( s)
a .
= 400
é:" | X2
2 300}
s X4
2 ol 3
Q L
4 200 (750 s)
o !
g 100 - 1 (300 s) 2 (700 s)
= i
0 ] L L [ 1 J
0 100 200 300 400 500 600

Axial stress, oy, (MPa)

Figure 10 Axial tension-transverse tension path applied to a SCS6/Ti-15-3 composite.

method to unidirectional composites with a
viscoplastic matrix.

Solution of thermo-viscoplastic problems of
periodic array models can be also obtained by
the finite element method. This is described by
Bahei-El-Din (1996) and implemented in the
Viscopac code (Bahei-El-Din, 1994).

1.14.4.3 Application

To illustrate the procedure described above,
we examine the time-dependent response of a
high-temperature metal matrix composite. The
composite material consists of a titanium ma-
trix (Ti-15-3) reinforced with a silicon carbide
fiber (SCS6) at 30 volume percent, and was
examined at 482°C. At this temperature, the
fiber is assumed to be elastic, and the matrix
elastic-viscoplastic with constitutive behavior
described by the constitutive law given in Sec-
. tion 1.14.4.1. Johnson et al. (1993) give material
properties of the constituents.

The unit cell derived from the periodic hex-
agonal array model (Figures 1(b) and 2), was
subdivided into 16 elements, 10 in the matrix
and 6 in the fiber. The finite element method
was then used to compute the mechanical and
transformation concentration factors B, and
F,s. Equation (100) and the evolution equations
for the viscoplastic matrix in Section 1.14.4.1,
were integrated for a specified overall stress
path (Dvorak et al., 1994).

The loading consisted of axial and transverse
normal stresses, ¢y, and G;,, which were com-
bined as shown in Figure 10 and applied at the
rates given in Figure 11. The corresponding
overall strains, g,; and &), are plotted in

Figure 12. The effect of the time-dependent
deformation of the matrix is evident, particu-
larly at the sustained stress in the time segment
4-5. Tt is seen that overall creep strains are
developed in both the axial and transverse
directions, albeit at different rates.

1.14.5 INELASTIC LAMINATES

In this section, we describe analysis of fibrous
composite laminates with inelastic phases using
micromechanical models for the unidirectional
plies. The approach expands the transforma-
tion field analysis to laminates and evaluates
the instantaneous response of the laminate as
well as the stresses and strains in the individual
plies and their phases. This is achieved by re-
garding the laminate as an aggregate of homo-
geneous phases with constraints derived from a
micromechanical model of the ply, and the in-
plane equi-strain condition found in laminates.

First, we find the lamina overall stresses as a
function of the applied load and the lamina
transformation strains. Next, we proceed to
evaluate the local stresses in the phases of the
individual plies using two approaches. In one
approach, the transformation field analysis is
used to formulate rate equations for the phase
stresses in all plies in terms of phase and ply
concentration factors and influence functions.
Either averaging models or periodic array mod-
els can be utilized. In the other approach, de-
veloped for laminates in which the individual
plics possess a periodic microstructure, the la-
mina stresses arc applied to a unit cell of the ply,
and the local stresses are computed with the
finite element method.
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1.14.5.1 Lamina Stresses

The behavior of a symmetric laminated plate
consisting of 2N fully bonded thin elastic plies
under thermomechanical loads is considered
(Figure 13). Referred to a Cartesian coordinate
system, Xz, kK = 1, 2, 3, in which the x; x,-plane
coincides with the midplane of the laminate, in-
plane membrane forces and the corresponding
uniform stresses, 6,1, 022, and oy, are applied,
together with a uniform normal stress, o33, in
the thickness direction x3. The out-of-plane
normal stress can be found in applications

that involve pressure loading, such as in fabri-
cation by isostatic pressing. & = [G11, G2, C12]
lists the in-plane stresses applied to the lami-
nate, and € = [g11, €2, 2€p] lists the corre-
sponding laminate strains. The latter are
caused by the applied stresses, o and o33 in
addition to the transformation strains gener-
ated in the individual plies, such as thermal
and inelastic strains, which are not recovered
by removal of the mechanical load.

Assuming additive decomposition of the var-
ious effects (Dvorak, 1991), and adopting the
notation of Bahei-El-Din (1992), the time rates
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Figure 13 Geometry of a symmetric fibrous laminate.

of the laminate in-plane stresses and strains are
written as

6 =Lé+ k633 + A @1on

&=Mo + 633 + (102)
where X = [Ayy, Aoz, Miz] and p = [y, paa, 21442]
are the in-plane transformation stress and
strain, respectively, and L. and M are the elastic
stiffness and compliance matrices for in-plane
loading. The k vector lists the in-plane stresses
caused in the laminate by a unit out-of-plane
normal stress, ¢33 = 1, in the absence of both
the total in-plane strain ¢, and transformation
stress A, whereas f is the elastic compliance
vector associated with the out-of-plane normal
stress, ¢33. On the other hand, the transforma-
tion strain p represents the total strain that
remains in the laminate after complete unload-
ing to zero stress, and the transformation stress
A is seen to represent the total stress caused in a
fully constrained laminate by the transforma-
tion strain p. Equations (101) and (102) pro-
- vide the relations,
L=M"!', k= -Lf. A= —Lp (103)

In analogy with Equations (101) and (102),
the uniform in-plane stress and strain rates of a
ply (i), i=1, 2,..., N, in the local coordinate
system X, k = 1,2.3 (Figure 13), can be written
as,

&=L + k& + A, (104)

& = M, + ;64 + o, (105)
where L; and M; are the elastic stiffness and
compliance matrices for in-plane loading, k;
and f; = —M, k; are the ply in-plane stress

and strain caused by a unit out-of-plane normal
stress, and N; and @; = —M; \; are the ply in-
plane transformation stress and strain. For a
transversely isotropic ply with overall elastic
longitudinal, and transverse moduli, E; and
Et, Poisson’s ratios, v; and vt, and longitudi-
nal shear modulus Gy, the matrices found in
Equations (104) and (105) are given by (Bahei-
El-Din, 1992; Dvorak and Bahei-El-Din, 1995),

. [E k+mn 2m¢ 0 2
L; = 2me dkm 0 =M,
k+m
| 0 0 plk+m)
i [ ¢
kg
0
(106)
1/EL  —vu/E, 0
M,' = -—VL/EL I/ET 0
0 0 1/G
- /G (107)
’_—VL/EL
fi= | —vr/Er | = Mk,
0

where k, £, m, n, and p are Hill’s (1964) moduli
(see Section 1.14.8), and E_ = n — %[k, v =
12k, m = E1/2(1 + v1), G = p.

When expressed in the overall coordinate
system xg, k=1, 2, 3, Equations (104) and
(105) are written as (Bahei-El-Din, 1992)
;=L + kS, + N (108)

& = Mo, + fi6%; + (109)
where

6; =R6,,65 = 60,8 = Nig (110)
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i = RiA; = —Lifky, fi; = Nig (111)
L; = NJLN; = M\, k; = N[k; = —L; (112)
cost@; sin’@, —1isin2e;
R7 =N;'= |sin?p; cos’q, 1isin2e,
sin2p; —sin2p; cos2o;
(113)

and ¢; is the angle between the local X)-axis and
the overall x;-axis (Figure 13).

The ply stresses in a laminate loaded by over-
all in-plane stress o, out-of-plane normal stress
o33, and ply transformation stress \;, intro-
duced by certain prescribed in-plane transfor-
mation strains ;= —M;\;, can now be
determined using the transformation field ana-
lysis method. The laminate is regarded as elas-
tic, and the ply in-plane stress is written as the
sum of the overall stress and local transforma-
tion stress contributions (Dvorak and Bahei-El-
Din, 1995). On the other hand, the normal
stress in the thickness direction equals the ap-
plied stress. Hence,

N
o= Hio + w6+ Y Kyh), 653 = 63
= (114)
i=1,2,.N

We note that the lamina out-of-plane transfor-
mation stresses Ass, A3, and Ap; do not neces-
sarily vanish, but they are not introduced in
Equation (114) since the in-plane equi-strain
condition imposed on the perfectly bonded
plies can be maintained under these transfor-
mation stresses without introducing additional
ply stresses. The H; and «; matrices are stress
distribution factors for in-plane overall stresses,
and out-of-plane normal stress, respectively,
and K is a transformation influence function.
The kth column of matrix K; provides the in-
plane stresses, ©1;, 022, and o2 caused in la-
mina (i) by a unit transformation stress A,
k = 1,2,3, applied to lamina (j) while the overall
stresses o and 633 are absent.

The distribution factors H; and k;, and the
influence coefficients K;; are evaluated by rea-
lizing the in-plane strain compatibility of the
perfectly bonded plies, € =&; and the force
equilibrium condition, Y, ¢; o; =@, i = 1,2,..
N, where ¢; = t;/t (see Figure 13) is the volume
fraction of the ply. From these conditions, and
using Equation (114), one can establish that
H,‘ = L[M,

k; = L{f—1) (115)

N
M=L", L=) cl (116)
i=1

. N
f=-Mk, k=) ck (117)
i=1

where §;; is Kronecker’s tensor, L is the identity
matrix, and

(119)

N N
ZC,‘H,’ = I,ZC;‘K,‘ =0
i=1 i=1

1.14.5.2 Transformation Field Analysis
Method

We now consider evaluation of the phase
stress rates in each lamina using the governing
equations presented in the preceding section,
when the plies are subjected to the stress in
Equation (114). Since we are primarily con-
cerned with transformation strains of thermal
and inelastic type, we first substitute the lamina
transformation stress A; in Equation (114) in
terms of the eigenstrains as A; = —L;p;, and use
Equation (111) to transform the strain p; into
the lamina local coordinates. Next, the ply
overall stress in Equation (114) is transformed
into the local coordinate system of the ply using
Equation (110). Hence, the ply stresses in local
coordinates is written as '

N

& = RH/6 + Rk — R Y KLRT iy
j=1

Gl =653, i=12,.N

(120)

Given the lamina stress referred to the mate-
rial axes, Equation (120), the local stresses in
the phases of the individual plies are determined
using the procedure described in Section 1.14.2.
A representative volume ¥; of a unidirectional
composite ply (), j = 1,2,..., N, is selected and
divided into subvolumes V%, n=1.2,..., O,
such that ¥; =Y V%. The number of subvo-
lumes Q depends on the micromechanical
model selected for the lamina. For two-phase
averaging models, Section 1.14.2.2.1, the num-
ber of subvolumes is two representing the ma-
trix and the fiber. On the other hand,
representative volumes derived from periodic
array models, Section 1.14.2.2.2, may contain
several subvolumes in each of the fiber and
matrix phases. From Equation (10), the local
stresses in the subvolumes of lamina (i) are
written as a (6 x 1) vector in the form
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(r"—_-ﬁ(r+b'c F. L
p 33 Z Ll n (121)

p=12,. Q, i= 1,2,..N
The first two terms represent, respectively, the
local stress used by the ply in-plane stresses and
out-of-plane normal stress. The (6 x 3) B' ma-
trix, and the (6 x 1) b‘ vector are stress con-
centration factor given by the respective
partitions of the regular (6 x 6) stress concen-
tration factor B’ after the columns of the latter
are reordered accordmg to the stress labels 11,
22, 12, 33, 13, 23. The last term in Equation
(121) is the local stress caused by the phase
transformation strains.

The lamina transformation strain is given in
terms of their local counterparts by the Levin’s
formula in Equation (11), written here for the
in-plane components;

Q AJ N . .
RN ARTEE YA Y
n=1
(122)

From Equations (120) —(122), the local stres-
ses in the plies can be written as

0‘ —B RHG+(BRK:+b)G33 ZFpn n.

Q@ . iaT .

“BRZKULUR ZEJH[BIW} "’lﬂJ
o n=t

p=12,.0i=12,.N

(123)

The first and second terms in Equation (123)
provide, respectively, the local stress caused by
the overall in-plane stresses and out-of-plane
normal stress applied to the laminate, while the
last two terms are the contributions of the
subvolume transformation strains in all plies
to the subvolume p of lamina (/). The third
term provides the local stresses due to local
transformation strains in lamina (i). The in-
plane constraint € = g; imposed on the lamina
causes additional stresses in the subvolumes of
the plies when transformation strains ), are
present in other layers (7). This effect is given by
the last term in Equation (123).

Considering a specific form for the phase
transformation strains, derived for example
from thermal and viscoplastic strains in Equa-
tion (99), the rate equations provided by Equa-
tion (123) for the local stresses in all plies can be
integrated along a specified loading path (o,
o33, T) applied to the laminate. If the phase
elastic moduli change with temperature, the
local stress concentration factors and influence
coefficients in all plies must be updated within

yl(t) = gj(t'yl VY2, --'7yR)

the integration process. Wafa (1994) gives ex-
amples of laminate analysis using this ap-
proach.

1.14.5.3 Finite Element/Transformation
Analysis Method

In this method, inelastic analysis of laminates
is performed considering a detailed representa-
tion of the microstructure of each ply using a
unit cell model. While the analysis on the mi-
croscale is performed with the finite element
method, the stress rates for each ply are ob-
tained from a transformation field analysis of
the laminated plate (Bahei-El-Din ef al., 1998).
In this way, local phenomena related to the
plies are incorporated in the finite element solu-
tion, while the corresponding overall ply defor-
mation is accounted for in the laminate
analysis.

Transformation field analysis of the lami-
nates follows the procedure described in the
preceding section, leading to Equatlon (120).
This prov1des the stress rates, &4y, 65,, 643, and
G5, i=1.2.. N, for the plies, referred to
their local coordinate system. Response of the
unit cell representing each lamina under these
stresses is computed with the finite element
method. For example, if the unit cell derived
from the PHA model is selected (Figure 2), the
rates of nodal forces equivalent to the lamina
stress rates are computed from Equation (27)
and applied at the degrees of freedom indicated
in Figure 2.

Considering viscoplastic phases, augmenta-
tion of the finite element procedure with Equa-
tion (120) provides a system of first order
differential equations (ODE) in the form
(Bahei-El-Din et al., 1998),

(124)

The unknown functions g, j =1, 2,..., R, are
identified with the laminate overall straln g, ply
stresses o; and o33 in the overall axes, and
transformation strain p,, i = 1, 2,..., N, phase
stress o, and transformation strain g, n =1,

., @ in all N plies. The unknown functions
also include the nodal displacements for the
unit cell of each ply and any internal variables
required to define the rate-dependent deforma-
tion of the phases, e.g. the overstress in Equa-
tion (85). Assuming elastic response of the
phases in the initial state, Equation (124) can
be integrated over a specified time period using
an ODE solver that is appropriate for stiff
differential equations which are usually en-
countered in viscoplastic response modeled
with the power law assumed in Equation (87).
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1.14.5.4 Application

The methods described above have been used
to evaluate the overall strains and fiber. axial

stress in a silicon carbide-titanium, (0/+45),

laminate caused by in-plane normal and shear
stresses applied in a proportional path at 565 °C
(Bahei-El-Din et al., 1998). The load-time re-
cord is shown in Figure 14. Material properties
of the elastic Sigma fiber and the viscoplastic
Timetal-21S matrix provided by Bahei-El-Din
and Dvorak (1997) are used, and a fiber volume
fraction of 0.325 is assumed.

The computed axial and shear strains are
plotted in Figure 15 and 16, and the axial fiber
stress in the 0°-ply is shown in Figure 17. The
figures compare the predictions obtained with
the Mori-Tanaka averaging model and the
periodic hexagonal array model. In the latter,
a refined mesh of the unit cell with 48 matrix
elements and 24 fiber elements was used for
each ply. It is seen that averaging the local fields

over the fiber and matrix phases, as modeled by
the Mori-Tanaka scheme, underestimates the
overall strains and the fiber stress in compar-
ison with the more refined representation of the
local fields offered by the finite element solution
of the PHA unit cell. Since axial deformation of
the laminate is dominated by the elastic 0°-fiber,
the Mori-Tanaka estimates of the laminate
maximum axial strain and fiber axial stress in
the 0°-ply are smaller than the finite element
estimates by only 10%. In contrast, a much
stiffer shear response is obtained with the
Mori-Tanaka model leading to an estimated
laminate maximum shear strain that is smaller
than the finite element value by 60%.

1.14.6 CLOSURE

Although efforts to estimate the overall
elastic moduli of composite aggregates from
local properties date back to the early 1960s,
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development of micromechanical theories for
inelastic composite materials has seen major
advances only in recent years. These have
been summarized in this chapter with emphasis
on fibrous composites with phases that exhibit
plastic and viscoplastic deformation. Capabil-
ities of the analytical methods developed for
these composite systems in predicting their
overall response under thermomechanical
loads have been also illustrated.

The methods discussed center on evaluation
of local stress and strain concentration factors
that reflect interactions of the phases and their
in situ constitutive behavior. Two classes of
micromechanical models can be utilized in com-
puting the concentration factors, averaging
models, which derive phase interactions from
solution of certain inclusion problems without

specific reference to the microgeometry, and
periodic array models, which derive phase in-
teractions from an idealized geometry of the
microstructure. Representation of the local
fields in these two models is quite different. In
averaging models, the local fields are averaged
over each phase, and thus the local phase prop-
erties are assumed to be homogeneous within
the phase. Although valid for elastic phases,
this assumption may lead to large errors in
the predicted overall response when behavior
of the phases is nonlinear. In periodic array
models, a piecewise uniform field is selected
with a desired level of refinement. This is ex-
pected to provide more realistic predictions,
albeit at a highcr computational effort.

In plasticity, formulation of the governing
equations for the local stresses may proceed in
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two different ways. In one method, the formu-
lation follows that of elastic inclusion pro-
blems, leading to averaging models, but with
instantaneous phase properties. The second
method, known as transformation field analy-
sis, finds the local fields by superposition of the
fields caused by the overall loads, and the local
transformation strains. The method is applic-
able to both averaging and periodic models,
and requires derivation of only elastic concen-
tration and transformation factors.

Viscoplastic analysis for either averaging or
periodic models with the transformation field
method leads to closed-form rate equations for
the local discrete stress field. These equations
have been expanded to include the stresses in
various plies of a laminated structure. The re-
sulting equations reflect interaction of the
phases in the individual plies, and mutual con-
straints caused by bonding the plies together.

While the focus in the present summary of
nonlinear analysis of composites was on micro-
mechanical models, other related techniques for
evaluation of the overall response can be found
in the literature. For example, several varia-
tional methods for estimating effective behavior
of nonlinear composites with random micro-
structures have been developed in the past 15
years. In elasticity, this line of inquiry was
initiated by Hashin and Shtrikman (1962,
1963) who used special forms of classical varia-
tional principles of elasticity, together with cer-
tain polarization fields in a homogeneous
comparison medium, to obtain rigorous
bounds on the effective elastic stiffness tensor
of statistically homogeneous composites. Gen-
eralization of the Hashin—Shtrikman varia-
tional principles to nomnlinear elastic
composites was first proposed by Talbot and
Willis (1985). New variational principles using
a linear comparison composite were later devel-
oped by Ponte Castaneda (1992), and by Su-
quet (1983) for power-law composites. Several
other procedures and more recent develop-
ments of variational methods have been re-
viewed and summarized by Suquet (1997) and
Ponte Castaneda and Suquet (1998).

Although they offer rigorous estimates of
effective properties in certain special circum-
stances, the variational methods are based on
and thus limited to systems exhibiting nonlinear
elastic or viscous material behavior. Some ex-
tensions have been made to power-law materi-
als and incremental theory of plasticity. Also,
general agreement of the variational model pre-
dictions has been found with the bimodal yield
surfaces of Section 1.14.3.3 (deBotton, 1995).
However, much more work is needed before
more complex inelastic material behavior,
which is implied by available experiments dis-

cussed, for example, in Section 1.14.3.4, can be
represented, especially under a variable
loading—unloading regime.

Despite the progress witnessed in microme-
chanics of nonlinear composite materials, there
are several unresolved issues that deserve future
attention. So far, constitutive behavior of the
matrix has been measured from specimens pre-
pared from bulk material. This could be differ-
ent from in situ behavior of the matrix, which is
constrained by the reinforcement. Moreover,
processing under high temperature and pres-
sure may cause a significant change in the
local properties. Damage, in the form of inter-
face decohesion, or microcracks in the phases
are often observed in composites after fabrica-
tion or application of service loads, and could
be coupled with plastic or viscoplastic flow of
the phases. Finally, although periodic models
provide reliable estimates of the overall inelas-
tic properties, it may not be representative of
certain composite systems. In this case, aver-
aging models or variational techniques can be
applied but in certain cases may deliver unreli-
able predictions. Macromechanical models re-
present an alternative, but do not have the
versatility of micromechanics.
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1.14.8 APPENDIX

Here, we record some results related to
estimates of the overall moduli of fibrous
composites using averaging models. Both the
fiber and matrix are assumed to be transversely
isotropic with x, as the axis of rotational sym-
metry. Let £ and Et denote, respectively, the
longitudinal and transverse elastic Young’s
modulus, and v; and vt denote Poisson’s
ratios under axial and transverse straining. Si-
milarly, we denote the longitudinal and trans-
verse elastic shear moduli by G and Gt. The
elastic stress—strain relation € = Mo for either
phase, where M is the elastic compliance ma-
trix. is written using the engincering moduli as



-

App}ndix 429

€11 -I/EL —VL/EL -—-VL/EL
€2 1/Er —vr/Er
€33 I/ET
2823 =

2831 SYM.

2g5 L :

The stiffness L =M™! is best written in
terms of Hill’s (1964) moduli,

k=—[1/Gr —4/Er +4v} [EL] ™ €= 2kv
n = Ey +4kv} = E, + £ /k,m = Gr,p = GL
(126)

The constitutive relation o = Lg is then writ-
ten as '

11 n £ £ 000 €11
[ep%) (k + m) (k - m) 000 €22
o33 | _ (k + m) 000/(} &3
G223 - mO0O0 2823
31 SYM P 0 2831
o2 Pl 2

(127)

We recall that Hill’s formulation of the
Eshelby’s  inclusion  problem,  Section
1.14.2.2.1, provides the strain and stress con-
centration factors in the fiber and matrix in
terms of matrices P and Q. These matrices
depend on the shape of the ellipsoidal inclusion
and elastic moduli of the matrix, and are related
by Equation (20). For continuous fibers of a
circular cross section embedded in a transver-
sely isotropic matrix, the nonzero components
of P are given by

_ ki +4m
Py = P33 = 8oy (s + 710)
Prn=Ppr=———
23 32 S (s + 7)) (128)
1 kl +2m1
Pay = Pss ==, __fat2m
“ > o 6 2my (ke +my)

where k,, m;, and p, are Hill’s elastic moduli of
the matrix phase.

Estimates of the overall moduli of binary
composite materials by the self-consistent
method are found by replacing the matrix mod-
uli in Equation (128) by the effective moduli of
the composite aggregate, and substituting the
result in Equation (22). This provides the con-
centration factors, which are then substituted in
Equation (6) to determine the overall moduli.
Numerical values of the overall Hill’s moduli 1,
p and k are computed from the following un-

1/Gr

0 0 G
0 0 G

0 0 33 (125)
0 0 G223
1/Gy, 0 O3y
1/GL_ G2

coupled equations (Hill, 1965a, 1965b),

Ciy
My —m my—m

kaf + Cmbem CmMf

kf+m km+m=

(129)

1_ cr Cm 1 g + Cm
20 p—pm pP—pr k+tm kp+m ky+m
(130)

Here, ¢y and ¢, are volume fractions of the
fiber and matrix, and m,, p,, and k., r = f,m, are
Hill’s moduli of the phases. The remaining two
moduli, £ and n, are found from the universal
connections

k—kr k—ky _
Z—Zf— -4, _n—~cfnf—c,,,nm

£ — Cfef— Cmfm _ kf—— km
7

(131)

The Mori—Tanaka model, on the other
hand, utilizes the form of matrix P given in
Equation (128) to compute partial concentra-
tion factors, which provide the fiber average
stress and strain in terms of their matrix coun-
terparts, Equations (23) and (24). The overall
moduli are then found from Equations (6),
(23)-(26). Chen et al. (1992) give the Mori-
Tanaka moduli for fibrous composites in the
following explicit form,

_ 2CmePf + Cm (PmPf +pr2n)

p= (132)

ZCfp;n + Cm (pf +Pm)

o Moy (o + 200) + Kt (comyp + ot )
T ki + (ki + 2m) (cymm + cmimy)
(133)

- cfkf(km + mm) + Cmbem (kf+ mm)
Cf(km + M) + (kf + mm)

(134)

0= cféf(km + mm) + b (kf+ mm)
cf(km + mm) + Cm (kf + mm)

(135)

1= Cyttm + et + (1 = cply — culm) 77— (136)

b — Ly

f_km

For completeness, we record the overall
Hill’'s moduli estimated with the vanishing
fiber diameter model (Dvorak and Bahei-
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El-Din, 1982; Bahei-El-Din, 1990). In this
model, the fiber constrains the matrix deforma-
tion in the axial direction only. Consequently,
unit strain concentration factors are assumed
under axial straining, and unit stress concentra-
tion factors are assumed under transverse nor-
mal and shear stresses as well as longitudinal
shear stress. The result is

- PmPy - m,,my
CfPm + CmPr My, + Cnimy
_ kmk/ 0= Cfefkm + Cmgmkj'
kam + kaf kam + cmkf
n, + cm CfCm (Zf - em)z
n=c ey — ——
m el kam + kaf

(137)

(138)

(139)



